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Abstract

Owing to the sporadic nature of demand for aircraft maintenance repair parts, airline operators perceive dif-
%culties in forecasting and are still looking for superior forecasting methods. This paper deals with techniques
applicable to predicting spare parts demand for airline 4eets. The experimental results of 13 forecasting meth-
ods, including those used by aviation companies, are examined and clari%ed through statistical analysis. The
general linear model approach is used to explain the variation attributable to di7erent experimental factors and
their interactions. Actual historical data for hard-time and condition-monitoring components from an airlines
operator are used, in order to compare di7erent forecasting methods when facing intermittent demand. The
results con%rm the continued superiority of the weighted moving average, Holt and Croston method for inter-
mittent demand, whereas most commonly used methods by airlines are found to be questionable, consistently
producing poor forecasting performance. We have, however, devised a new approach to forecasting evaluation,
a predictive error-forecasting model which compares and evaluates forecasting methods based on their factor
levels when faced with intermittent demand. A simple example is presented to illustrate the performance of
the mathematical model. It is suggested that these %ndings may be applicable to other industrial sectors, which
have similar demand patterns to those of airlines.

Scope and purpose

Demand forecasting is one of the most crucial issues of inventory management. Forecasts, which form
the basis for the planning of inventory levels, are probably the biggest challenge in the repair and overhaul
industry, as the one common problem facing airlines throughout the world is the need to know the short-term
part demand forecast with the highest possible degree of accuracy. The high cost of modern aircraft and
the expense of such repairable spares as aircraft engines and avionics constitute a large part of the total
investment of many airline operators. These parts, though low in demand, are critical to operations and their
unavailability can lead to excessive down time costs. Most airline materials managers deal with intermittent
demand, which tends to be random and has a large proportion of zero values. In an e7ort to achieve this, the
study has presented a model that could be of great bene%t to airline operators and other maintenance service
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organisations. It will enable them to select in advance the appropriate forecasting method that better meets
their cyclical demand for parts. This approach is consistent with the purpose of this study, which aims to
compare di7erent forecasting methods when faced with intermittent demand.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Demand forecasting is one of the most crucial issues of inventory management. Forecasts, which
form the basis for the planning of inventory levels, are probably the biggest challenge in the repair
and overhaul industry. One common problem facing airlines throughout the world is the need to
forecast short-term part demand with the highest possible degree of accuracy. The high cost of
modern aircraft and the expense of such repairable spares as aircraft engines and avionics contribute
greatly to the considerable total investment of many airline operators. These parts, though low in
demand, are critical to operations and their unavailability can lead to excessive down time costs.
Most airline materials managers have to deal with intermittent demand, which tends to be random
in time and of quantity, and has a large proportion of zero values. This topic has received extremely
limited study within the aviation industry.

Forecasting the demand for parts with highly variable demand patterns is one of our main ob-
jectives since some of the traditional forecasting methods generate results with large error margins
which result in many stock-outs. In our recent survey [1,2] of airline operators and maintenance
service organisations, several common associated problems were identi%ed in relation to developing
service part forecasts. Firstly, it showed that most companies felt the service part forecasts they
received were never realistic and as such they tried to outguess the forecast. Secondly, for those
companies which did implement the material requirements planning (MRP) system, the service part
forecast was loaded directly into the system without any review of forecasting error. Finally, the
most commonly cited problems by %rms in the development of reliable forecasts is the relatively
high percentage of items which have experienced erratic or lumpy demand.

The main speci%c objectives in this research study are:

• To analyse the behaviour of di7erent forecasting methods when dealing with lumpy and uncertain
demand. We argue that the performance of a forecasting method should vary with the level and
type of lumpiness (i.e., with the sources of lumpiness).

• Based on the forecast accuracy measurements and the results of their statistical analysis, a pre-
dictive model is developed successfully for each of the 13 forecasting methods analysed.

2. Literature review

This section involved two distinct focuses which will be presented separately. The %rst
part will consider the variety of literature relating to the forecasting of intermittent demand. The
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second will discuss the practicalities of coping with such irregularities in demand in the airline
industry.

2.1. Related research

In order to determine suitable spare part inventory levels, one must know about maintenance
schedules and parts forecasting that feed into the MRP system. However, forecasting demand is
reported as a major problem by some companies [1–3] which implement the MRP system. This is
due to the nature of demand pattern variation in the airline sector, where such an intermittent demand
produces a series of random values that appear at random intervals, leaving many time periods with
no demand. The literature, that includes a relatively small number of proposed forecasting solutions
to this demand uncertainty problem, can be found in [4–7]. Watson [8] found that the increase in
average annual inventory cost resulted from the 4uctuations in the forecast demand parameters of
several lumpy demand patterns. The single exponential smoothing and the Croston methods are the
most frequently used methods for forecasting low and intermittent demands [5,7]. In practice, the
standard method for forecasting intermittent demand is the single exponential smoothing method,
although some production management texts suggest the lesser-known alternative of the Croston
method [5]. In their experimental study, Johnston and Boylan [9], after using a wide range of
simulated conditions, observed an improvement in forecast performance using the Croston method
when compared with the straight Holt (EWMA) method. On the other hand, Bartezzaghi et al.
[4] in their experimental simulation found that EWMA appears applicable only with low levels
of lumpiness. Willemain et al. [7] concluded that the Croston method is signi%cantly superior to
exponential smoothing under intermittent demand conditions. In addition, other methods such as the
Wilcox [10] and Cox Process [11] methods were also used for forecasting intermittent demand.
Both methods were shown to produce poor and unreliable forecasting results after being tested on
the current research data and for that reason neither is included in the study. Zhao and Lee [12]
concluded in their study that forecasting errors signi%cantly increases total costs and reduce the
service level within MRP systems. They argued that the selection of the forecasting methods has a
signi%cant impact on system performance. Their results showed that forecasting errors increase as
variations in the demand increase. The fact that the existence of forecasting error increases the total
cost of MRP systems has been reported in several other studies [12–15].

2.2. Airline forecasting systems review

Demand for air transport varies with time, as for many other goods. There are variations in daily,
weekly, and annual demand which result in peaks at popular times. The competitive market in which
most operators now work results in their trying to meet these peaks as far as reasonably possible.
Aircraft availability has, therefore, to be maximised at these peaks and the maintenance %tted into a
time slot when the planes are not required for commercial activities [16]. The context for this type
of inventory forecasting in this review was based on our recent airline survey [1,2] and the %ndings
were potentially helpful for carrying out further studies.

As it is general within the aviation industry that the usage patterns for most parts are unpredictable,
and the forecasting of future demand was made by considering available maintenance contract in-
formation and looking at scheduled maintenance plans. Some companies prepare manual forecasts
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for expensive parts (rotables/repairables). Forecasts are generally based on past usage patterns such
as 4ying hours or parts demand. On the other hand, the annual budgets for all departments in the
technical division are taken into account, along with the number of forecasted 4ight hours/cycles,
the number and type of checks planned for every aircraft, and the 4eet size. With this data, the
purchasing department tries to determine the quantity of stock necessary for the particular period.
Alternatively, when new types of aircraft are introduced, the airframe and engine manufacturers nor-
mally provide a recommended spares provisioning list, based on the projected annual 4ying hours,
which includes forecast usage information on new aircraft. Also the original equipment manufactur-
ers provide overhaul manuals for the components %tted to the aircraft which enable an assessment
of piece parts required based on reliability information and the speci%ed components’ operational
and life limits.

Forecasting systems generally depend on the category of part used. This is due to aircraft parts
being de%ned either as hard-time (HT ), predictable, or condition-monitored (CM), unpredictable
(both of these terms will be explained later in this paper). So our survey indicated that forecasting
is a major problem, which could result in an inability to stock accurately, or the experience of a
lack of “tie-in” to forecasts, especially in those companies that operate and support several major
aircraft types and have large 4eets.

3. Experimental framework

Thirteen forecasting methods, including those used by aviation companies have been considered
in this study. Table 1 brie4y summarises the philosophy of these techniques. The sample data used
in this study consists of Fokker, BAe and ATR aircraft repairable parts which are unpredictable.
The airline operator participating in this research kept records of weekly demand levels for each
component which were then grouped in monthly and quarterly intervals of demand usage, a list
of these is shown in Table 2. We limited the sample to parts that had valid demands (zero is a
valid demand; missing is not). Only recurring demands, hard-time and condition-monitoring, which
could be expected to occur routinely as a result of aircraft utilisation, were considered in this
study. However, the data employed within this study exhibited trend, seasonal and irregular random
4uctuation characteristics.

In this study we found it appropriate to use a Microsoft Excel spreadsheet, shown in previous
studies [17,18], as a practical and suMcient tool for a limited budget. The time series data set was
divided into an “initialisation” set and a “test” set. The initialisation set was then used to estimate
any parameters and to initialise the method. Forecasts were then made for the test set. This procedure
continued over the entire forecasting horizon. Accuracy measures are computed for the errors in the
test set only.

Before making predictions using a forecasting method, we want to identify optimal values for
smoothing constant parameters (�; �, and �) that minimise the forecasting accuracy measures based
on Theil’s U -statistic range rules [19], therefore we applied the optimisation tool known as solver.
The demand 4uctuations are typically random and sporadic in this study, so choosing the right
smoothing values was of vital importance. The issue of smoothing constant parameters itself is
beyond the scope of this research study, however, for further explanation of this term refer to [19]
as this investigation was based on crossed experimental factors rather than nested factors.
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Table 1
A summary of selected forecasting methods

No. Method Abbreviation Reference Description

1 Additive winter AW [19,29] Assumes that the seasonal e7ects are of con-
stant size.

2 Multiplicative winter MW [19,29] Assumes that the seasonal e7ects are pro-
portional in size to the local de-seasonalized
mean level.

3 Seasonal regression model SRM [30] Is used in time series for modelling data with
seasonal e7ects.

4 Component service life
(replacement)

MTBR [31] Estimates of the service life characteristics of
the part (MTBR & MTBO), derived from
historical data (4ying hours or number of
landings).

5 Weighted calculation of
demand rates

WCDR [32] The total demand for a given part during an
experience period is divided by the total ac-
tivity of the aircraft during the same period
to give an average forecast rate.

6 Weighted regression demand
forecasters

WRDF [32] Considers forecasts based on moving regres-
sions in terms of 4ying hours.

7 Croston Croston [5] Forecasting in circumstances of low and
intermittent demand.

8 Single exponential smoothing SES [19] Forecasting in circumstances of low and
intermittent demand.

9 Exponentially weighted
moving average

EWMA,
Holt

[19,33] An e7ective forecasting tool for time series
data that exhibit a linear trend.

10 Trend adjusted exponential
smoothing

TAES [34] Forecasting time series data that have a linear
trend.

11 Weighted moving averages WMA [19] A simple variation on the moving average
technique that allows for just such weighting
to be assigned to the data being averaged.

12 Double exponential smoothing DES [35] Forecasting time series data that have a linear
trend.

13 Adaptive-response-rate single
exponential smoothing

ARRSES [19] Has an advantage over SES in that it allows
the value of � to be modi%ed in a controlled
manner as changes in the pattern of data
occur.

The following four environmental factors were included in the experiment: the seasonal period
length, SPL; primary maintenance process, PMP; square coeMcient of variation of demand, CV 2

and the average inter-demand interval, ADI. Since actual values for CV 2 and ADI were used,
they are taken as covariate factors, whereas SPL and PMP are selected as categorical factors. The
factor levels may be di7erent from those of other research studies since, as this study is concerned
with aviation maintenance, most variables were covariates rather than categorical variables. Table 3
summarises the four factors and a description follows.
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Table 3
Environmental factors, (—) indicates covariates factor

Factor Description Levels Values Units

SPL Seasonal period length 3 4,12,52 Quarters, months, weeks
PMP Primary maintenance processes 2 HT; CM Flight hours or landings
CV 2 Square coeMcient of variation — 0.0–1.65 —
ADI Average inter-demand interval — 1.0–20.83 —

3.1. SPL

This is the number of periods for which the demand pattern is forecasted (Table 4). The most
popular seasonal period length used by aviation companies [1,2] is either a monthly or a quar-
terly one. The longer the time horizon of the forecasts in terms of the number of time buckets, 1

whereby a weekly SPL has more, i.e. is longer than, e.g. a monthly SPL, the greater the chance that
established patterns and relationships will change, thereby invalidating forecasts. Thus forecasting
accuracy decreases as the time horizon as thus de%ned increases [20].

3.2. PMP

The three Primary Maintenance Processes recognised by the UK CAA [21] are hard-time,
on-condition, and condition-monitoring. In general terms, both the %rst two involve actions directly
concerned with preventing failure, whereas the last does not. The condition-monitoring process is
expected to lead to preventative action if necessary. The categories of component maintenance are
as follows:
Hard-time, HT: This is de%ned as a preventive process in which the known deterioration of an

item is restored to an acceptable level by the maintenance actions carried out at periods related to
time in service. This time may be calendar time, number of cycles, or number of landings. The
prescribed actions normally include servicing, full or partial overhaul, or replacement.
On-condition, OC: This is a preventive Primary Maintenance Process. It requires that an appliance

or part be periodically inspected or checked against some appropriate physical standard to determine
whether it can continue in service. The purpose of the standard is to remove the unit from ser-
vice before failure during normal operation. These standards may be adjusted based on operating
experience or tests, as appropriate, in accordance with a carrier’s approved reliability program or
maintenance manual.
Condition-monitoring, CM: This is not a preventive process, having neither hard-time nor

on-condition elements, but one in which information on items, obtained by taking relevant mea-
sures on condition-related variables, is analysed, and interpreted on a continuing basis as a means of
implementing corrective procedures. Models of decision aspects of condition-monitoring have con-
centrated upon cases where a direct measure of wear was available, such as the thickness of a brake

1 Time bucket refers to the units of time into which the planning horizon is divided, and is usually represented in
weeks, days or months.
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pad in a braking system [22], those measurements are related stochastically to the condition of the
component.

3.3. Demand size and average time interval factors, CV 2, ADI

Demand pattern classi%cation, another distinguishing feature of this study, is when the time series
vary systematically according to their inherent variability. In this study, the data demand patterns
explicitly consider both the demand pattern and the size of demand when it occurs, They are classi%ed
into four categories [23] based on modi%ed Williams’ criteria [24]. In this case, the categorisation
schemes have the following characteristics:

The “ADI6 x; CV 26y” condition tries e7ectively to test for stock keeping units, which are not
very intermittent and erratic (i.e. faster moving parts or parts whose demand pattern does not raise
any signi%cant forecasting or inventory control diMculties).

The “ADI ¿x; CV 26y” condition tests for low demand items or intermittent demand patterns
with constant, or more generally, no highly variable demand sizes (i.e. not very erratic).

The “ADI ¿x; CV 2 ¿y” condition tests for lumpy demand items, lumpy demand may be de%ned
as a demand with great di7erences between each period’s requirements and with a great number of
periods with zero requests.

The “ADI6 x; CV 2 ¿y” condition tests for erratic (irregular) demand items with rather frequent
demand occurrences (i.e. not very intermittent).

In all these cases, x denotes the average inter-demand interval, cut-o7 value (ADI = 1:32) which
measures the average number of time periods between two successive demands and y, the corre-
sponding square coeMcient of variation, cut-o7 value (CV 2 = 0:49), that is equal to the standard
deviation of period requirements divided by the average period requirements.

4. Experimental results and analysis

Analysis of variance, ANOVA, is used to explain the variation attributable to the various ex-
perimental factors and their interactions. Table 5 presents a summary of the general linear model,
GLM, results and reports the p-values for each of the main factors and their two-way interactions.
For all methods, the third- and fourth-order interactions were found to be insigni%cant and as such
were eliminated from this analysis. A natural logarithm transformation of the dependent variable and
some independent variables were used to overcome the problem of non-constancy of error variance
in linear models, see [25].

Owing to space limitations, the MAPE technique will be the only method reported in this paper
due to its advantageous performance with intermittent demand [26,27]. GLM output results for all
accuracy measuring techniques are not presented here. However, they are available upon request
from the authors.

In this study, we have devised a new approach to forecasting evaluation. This new model compares
and evaluates the forecasting methods based on their factor levels. The description and function of
the model will be discussed later in this paper. Firstly, however, the experimental results need
further clari%cation through an ANOVA of the experimental factor-design employing the forecast
errors (measured in terms of MAPE) as the dependent criterion, as shown in Table 5, for the overall
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Table 5
A summary of unbalanced ANOVA (GLM) results for forecasting factors (p-values) ∼ logMAPE

Factors ARRSES AW Croston DES Holt MTBR MW SES SRM TAES WCDR WMA WRDF

SPL 0:0001 0:0061 0:0001 0:0001 0:0001 0:0001 0:0001 0:0001 0:0175 0:0001 0:0001 0:0001 0:0001

PMP 0:0001 0:0041 0:0001 0:0001 0:0011 0:0001 0.129 0:0001 0:0011 0:0001 0:0001 0:0011 0:0001

CV 2 0.076 0:0495 0:0515 0:0225 0.089 0:0385 0:0001 0:0185 0.124 0:0175 0.090 0:0021 0:0165

ADI 0:0001 0:0215 0:0001 0:0001 0:0001 0:0001 0:0001 0:0001 0:0515 0:0001 0:0001 0:0001 0:0001

SPL× PMP 0.261 0.461 0.079 0:0495 0.250 0.351 0.969 0.063 0.297 0:0195 0.433 0.239 0:0255

SPL× CV 2 0.286 0.726 0.063 0.326 0.089 0.216 0.686 0.125 0.464 0.096 0.187 0.275 0.265
SPL× ADI 0:0001 0:0165 0:0001 0:0001 0:0001 0:0011 0:0001 0:0001 0:0395 0:0001 0:0001 0:0001 0:0001

PMP × CV 2 0:0175 0:0215 0:0011 0:0011 0:0125 0:0001 0:0325 0:0011 0:0135 0:0001 0:0011 0:0081 0:0011

PMP × ADI 0:0061 0.418 0:0021 0:0001 0.063 0:0105 0.260 0:0011 0:0375 0:0011 0:0041 0:0325 0:0011

CV 2 × ADI 0.246 0.591 0.072 0:0435 0.176 0.119 0:0001 0.139 0.573 0.088 0.100 0.646 0.263

Superscript 1 indicates signi%cance at the 0.01 level. Superscript 5 indicates signi%cance at the 0.05 level. No superscript
denotes a lack of signi%cance at both levels (at 0.01 and 0.05 level).

experimental, main factor and two-way interaction e7ects. In addition, Table 6a–c give the signi%cant
coeMcients of the %tted GLMs.

Generally, in Table 5 all factors, except for PMP and CV 2, have signi%cant main e7ects on all
methods in terms of the MAPE accuracy measure. PMP is signi%cant for most methods, except
MW which is not signi%cant (p = 0:129). CV 2 was also found to be signi%cant for most methods,
for ARRSES, Holt, WCDR and SRM (p = 0:076, 0.089, 0.090 and 0.124, respectively), however,
they are not signi%cant. This shows that all the experimental factors, SPL, PMP, CV 2 and ADI,
have a signi%cant e7ect on the MAPE measure of the forecasting methods’ error accuracy.

Table 5 also indicates that the interaction SPL×PMP for all methods is not signi%cant except for
the DES, TAES and WRDF methods where they are found to be signi%cant at the 0.05 level. The
SPL× CV 2 is not signi%cant for all methods, while the interaction SPL× ADI is signi%cant for all
methods at the 0.01 levels except for the AW and SRM methods which were at the 0.05 level. The
interaction PMP × CV 2 was signi%cant for all methods too, at 0.01 level for methods (ARRSES,
AW, Holt, MW and SRM) the rest of the methods were at 0.01 levels. The PMP×ADI interaction
was not signi%cant for the AW and MW methods, however, it was marginally signi%cant (p=0:063)
for the Holt method while for all other methods it was signi%cant for either level.

Finally, the interaction of CV 2 ×ADI was found to be only signi%cant with the two methods DES
and MW, while for all other methods it was insigni%cant.

As reported above, the signi%cant terms were similar for most methods except AW, DES, Holt
and MW. In the next few sections, we examine, for each method, the e7ects of each factor on the
accuracy of the MAPE measurement.

4.1. The e>ect of seasonal period length

The coeMcients of SPL increase with seasonal period length (quarterly, monthly and weekly
respectively) as expected (refer to Section 3.1). Quarterly SPL reduces the forecasting error on
average for all methods, compared with a monthly SPL (Table 6a). The interaction of SPL× PMP
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Table 6

Methods CV 2 ADI Seasonal period length coeMcient levels PMP coeMcients
CoeMcient CoeMcient

SPL = 4 SPL = 12 SPL = 52 HT CM

(a) Coe?cients of @tted models: main e>ect measured by MAPE technique
ARRSES 0.7459 0.56057 −1:1206 0.0162 1.1044 0.5024 −0:5024
AW 1.4153 0.53050 −1:0565 −0:0370 1.0935 0.4721 −0:4721
Croston 0.7087 0.57775 −1:1567 −0:0080 1.1647 0.5454 −0:5454
DES 0.9346 0.54884 −1:1020 0.0823 1.0197 0.6264 −0:6264
Holt 0.6743 0.46677 −1:0382 −0:0935 1.1317 0.4431 −0:4431
MTBR 0.9144 0.41238 −0:8178 0.0282 0.7896 0.7171 −0:7171
MW 5.8040 3.08110 −2:9568 −0:8741 3.8309 0.7837 −0:7837
SES 0.9258 0.52308 −0:9888 −0:0656 1.0544 0.5763 −0:5763
SRM 1.1008 0.24350 −0:6740 −0:0609 0.7349 0.5535 −0:5535
TAES 0.9665 0.60377 −1:1090 0.0097 1.0993 0.6476 −0:6476
WCDR 0.7345 0.55559 −1:1078 0.0239 1.0839 0.6445 −0:6445
WMA 1.2576 0.43977 −1:2226 0.1537 1.0689 0.4444 −0:4444
WRDF 0.9907 0.57909 −1:0286 0.0467 0.9819 0.5858 −0:5858

Methods SPL× PMP SPL× CV 2

SPL = 4 SPL = 12 SPL = 52

HT CM HT CM HT CM SPL = 4 SPL = 12 SPL = 52

(b) Coe?cients of the @tted models MAPE
ARRSES −0:09472 0.09472 −0:01096 0.01096 0.10568 −0:10568 0.4447 0.2449 −0:6896
AW −0:02867 0.02867 −0:06592 0.06592 0.09459 −0:09459 0.2345 0.3191 −0:5536
Croston −0:11346 0.11346 −0:01245 0.01245 0.12591 −0:12591 0.5553 0.3522 −0:9075
DES −0:12285 0.12285 −0:04211 0.04211 0.16496 −0:16496 0.3558 0.2938 −0:6496
Holt −0:06814 0.06814 −0:04321 0.04321 0.11135 −0:11135 0.5189 0.4330 −0:9519
MTBR −0:08958 0.08958 −0:00487 0.00487 0.09445 −0:09445 0.5423 0.2007 −0:7430
MW −0:03050 0.03050 −0:03360 0.03360 0.06410 −0:06410 0.9360 0.9800 −1:9160
SES −0:11804 0.11804 −0:03021 0.03021 0.14825 −0:14825 0.4762 0.3767 −0:8529
SRM −0:11628 0.11628 0.01389 −0:01389 0.10239 −0:10239 0.5260 0.2184 −0:7444
TAES −0:16313 0.16313 −0:00152 0.00152 0.16465 −0:16465 0.5664 0.3498 −0:9162
WCDR −0:04181 0.04181 −0:05031 0.05031 0.09212 −0:09212 0.5115 0.3283 −0:8398
WMA −0:08706 0.08706 −0:02345 0.02345 0.11051 −0:11051 0.2965 0.3788 −0:6753
WRDF −0:16215 0.16215 0.00564 −0:00564 0.15651 −0:15651 0.4699 0.1540 −0:6239

Methods SPL× ADI PMP × CV 2 PMP × ADI CV 2 × ADI

SPL = 4 SPL = 12 SPL = 52 HT CM HT CM

(c) Coe?cients of the @tted models MAPE
ARRSES 0.5570 −0:14659 −0:41041 −0:7191 0.7191 −0:13735 0.13735 0.12300
AW 0.5929 −0:12110 −0:47180 −0:8247 0.8247 −0:05192 0.05192 −0:16590
Croston 0.5998 −0:16728 −0:43252 −0:8967 0.8967 −0:13635 0.13635 0.16576
DES 0.6248 −0:21030 −0:41450 −0:9427 0.9427 −0:18090 0.18090 0.20820
Holt 0.4685 −0:09842 −0:37008 −0:7066 0.7066 −0:08697 0.08697 0.13504
MTBR 0.3807 −0:10488 −0:27582 −1:4015 1.4015 −0:13481 0.13481 0.17340
MW 2.1575 0.42260 −2:58010 −0:9702 0.9702 −0:49100 0.49100 −4:03490
SES 0.4440 −0:08377 −0:36023 −0:9353 0.9353 −0:15025 0.15025 0.14544
SRM 0.3139 −0:08784 −0:22606 −0:9347 0.9347 −0:12494 0.12494 0.14760
TAES 0.6169 −0:18018 −0:43672 −1:1749 1.1749 −0:15855 0.15855 0.17320
WCDR 0.5394 −0:14253 −0:39687 −1:0067 1.0067 −0:15086 0.15086 0.18040
WMA 0.7095 −0:27225 −0:43725 −0:7667 0.7667 −0:10272 0.10272 −0:04670
WRDF 0.5519 −0:14560 −0:4063 −0:9377 0.9377 −0:15726 0.15726 0.11480

Signi%cant interactions shown in bold.
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is found to be only signi%cant with the DES, TAES and WRDF methods. Table 6b shows that for
a quarterly, SPL the e7ect of PMP on accuracy measurement will be reduced for the Hard-Time
and increased by Condition-Monitoring components and similarly for DES and TAES methods on
a monthly SPL basis. Conversely, for WRDF method the e7ect of PMP on accuracy measuring
will be increased for the Hard-Time and reduced by Condition-Monitoring components. Finally, for
a weekly SPL, the e7ect of PMP on accuracy measuring will be increased for the Hard-Time and
reduced by Condition-Monitoring components for these methods.

4.2. The e>ect of Primary Maintenance Processes

Primary Maintenance Processes, PMPs, show that hard-time HT components have more e7ect
in increasing the forecasting error measured by MAPE, compared with condition-monitoring CM
(Table 6a). The interaction of PMP with both CV 2 and ADI was found to be signi%cant for most
methods, Table 6c indicating that as CV 2 increases the e7ect of PMP on MAPE will be reduced
for the Hard-Time and increased by condition-monitoring components for all methods. And it is a
similar story for ADI as the average inter-demand interval increases the e7ect of PMP on MAPE
will be reduced with HT and increased for CM components for all methods except for the AW,
Holt and MW methods.

4.3. The e>ect of squared coe?cient of variation on demand

From Table 6a the coeMcient of CV 2 is positive and similar for all methods. However, Table
6c shows that for the DES method this positive coeMcient is augmented by a positive coeMcient
of CV 2 × ADI , i.e. as ADI increases this e7ect increases, while for the MW method this positive
coeMcient is o7set by a negative coeMcient of CV 2 ×ADI , i.e. as ADI increases this e7ect reduces.
This can be explained by saying that as ADI increases thus the number of time periods with zero
demand will increase, in this case the performance of MW will be reduced.

4.4. The e>ect of average inter-demand interval

In this study, the coeMcient of ADI is positive, i.e. as ADI increases the impact of reducing
the forecasting method performance will be higher (higher MAPE). Table 6a shows the coeMcient
e7ect to be much higher for the MW (3.08) while on average (0.50) for the rest of the meth-
ods. The interaction of SPL × ADI shows that the coeMcient of ADI decreases as SPL increases
(Table 6c), but the bene%t is usually less as ADI increases, indicating that for very lumpy demand,
the advantage of a quarterly SPL is reduced, i.e. with weekly SPL, the ADI improves the fore-
casting methods’ performance. On the other hand, with a quarterly SPL, the ADI displays a minor
impact on the forecasting performance. Hence, the relevance of ADI depends on the seasonal period
length selected.

5. Predictive error-forecasting model, PEFM

In trying to establish which forecast method is best in any particular situation, it is necessary to
have statistical information available, particularly with regard to the size of the forecasting errors.
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Fig. 1. Proposed predictive error forecasting model, dialog box.

The predictive error forecasting model, as its name suggests, is thus a model whereby the forecast
error predicted for any component selected together with its most eMcient parameters is found. By
entering in the prepared dialog-box, the forecasting factors of a speci%c item [e.g. SPL, PMP,
CV 2 and ADI, (see Fig. 1)], the adapted Visual Basic for Applications 2 runs through a series
of complex calculations of prepared coeMcients. In order to proceed with the explanation of the
predictive error-forecasting model and its relevant example, we %rst start by de%ning the GLM
mathematical model de%nition.

5.1. Models’ mathematical properties derivations

The GLM is a straightforward extension of simple and multiple regression allowing for more than
one independent variable. The objective of GLM is the same as that of multiple regression; that is,
we want to use the relationship between a response (dependent) variable and factor (independent)
variables to predict or explain the behaviour of the response variable. In multiple regression, the

2 The programme and the table of routines contained in the VBA functions module are available upon request from the
authors.
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coeMcient attached with each independent variable should measure the e7ect and average change in
the response variable associated with changes in that independent variable, while all other independent
variables remain %xed. This is the standard interpretation for a regression coeMcient in a multiple
regression model. So this means that all models have been “regression” models where the response
variable is related to quantitative independent variables. The multiple linear regression is speci%ed
as

y = �0 + �1x1 + �2x2 + · · · + �mxm + �; (1)

where y is the dependent variable, xj; j = 1; 2; : : : ; m, represent m di7erent independent variables,
�0 is the intercept (value when all the independent variables are 0), �j; j = 1; 2; : : : ; m, represent
the corresponding m regression coeMcients, � is the random error, usually assumed to be normally
distributed with mean zero and variance  2.

The basic model, a generalised general linear model, has the form of Eq. (1), which is then further
speci%ed by the use of two key properties:

• Property one: Unequal cell, the standard analysis of variance calculations for multifactor designs
can only be used if we have balanced data, which occurs if the number of observations for all
factor-level combinations, usually called cells, are all equal.

• Property two: Models including both dummy and interval-independent variables (continuous
variables) sometimes called the covariate are a simple extension.

The obvious di7erence between this model and a regression model (Eq. (1)) is the absence
of independent variables. This is where dummy variables come in. The model using dummy
variables is

yij = "z0 + �1z1 + �2z2 + · · · + �tzt + �ij

i = 1; 2; : : : ; t; j = 1; 2; : : : ; ni; (2)

where ni is the number of observations in each factor level, t is the number of such factor levels, "
is the overall mean, �i are the speci%c factor-level e7ects, subject to the restriction

∑
�i = 0, which

means that the “average” factor-level e7ect is zero. Note that implementing this restriction requires
that only (t − 1) of the �̂ estimate need be estimated because any one parameter is simply the
negative of the sum of all the others, i.e. coeMcient of the %nal level is the sum of minus the other
coeMcients. zi are the dummy variables indicating the presence or absence of certain conditions for
observations.

It is quite obvious from this that the GLM is more cumbersome than the usual standard analysis
of variance calculations. However, it cannot be used in all applications and it becomes necessary to
use the general linear model when analysing factorial data with unequal cell frequencies.

5.2. Illustrative example

In this study, the linear statistical procedure GLM is %tted to the data for each method, allowing
estimation of any forecasting accuracy measurement for any given set of factors and covariates
included. The coeMcients used are slightly di7erent to those given in Table 6a–c as non-signi%cant
terms are eliminated one by one. These coeMcients are presented in tabular form for each of the
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13 forecasting methods. The predictive model then selects the most appropriate forecasting method
based on the lowest forecast errors (e.g. measured in terms of MAPE selected). The whole process
takes less than a second. This process is demonstrated by the following example:

For this example, the DES method is selected, and assumes factor values of: SPL= 12 (monthly),
PMP=HT , CV 2 = 0:39, ADI = 2:76 and in addition to those factors we select the MAPE technique
as a forecast accuracy measurement.

Table 5 reminds us that the DES method has %ve signi%cant interactions which are then reduced
to four after non-signi%cant terms are eliminated: PMP and CV 2, all interact with SPL. This means
that PMP and CV 2 factors will all depend on the level of the SPL (quarterly, monthly or weekly).
PMP interacts with both CV 2 and ADI and both factors will also depend on the level of PMP (HT
or CM). Based on the model interaction given above, the GLM equation should read as follows:

yij = " + &i + 'j + (&')ij + �1(CV 2) + �2(ADI) + �ij;

where yij is the response (MAPE) in the jth PMP, j = 1; 2, in the ith SPL, i = 1; 2; 3, " is the
mean (or intercept), &i is the e7ect of the ith SPL, 'j is the e7ect of the jth PMP, (&')ij is the
interaction between SPL and PMP, �1; �2 are the regression coeMcients for CV 2 and ADI.

Note that "; &i, and 'j are parameters describing factor levels, whereas the �i are regression co-
eMcients. For simplicity, the general linear model equation could alternatively be written as follows:
MAPE = constant + coeMcient of SPL level + coeMcient of PMP level + CV 2 coeMcient +

ADI coeMcient+coeMcient for SPL interacts with PMP+ADI coeMcient interacts with SPL level+
CV 2 coeMcient interacts with PMP level + ADI coeMcient interacts with PMP level.

The constant term in the %tted GLM is 3.0789, the other estimated coeMcients follow.

E7ect of SPL = 12 is given by 0.1671.
E7ect of PMP = HT is given by 0.6458.
CoeMcient of CV 2 is 1.5031.
CoeMcient of ADI is 0.62223.
CoeMcient for SPL interacts with PMP combination = −0:07015.
Additional coeMcient of ADI for SPL of 12 = −0:20068.
Additional coeMcient of CV 2 for PMP of HT = −0:7919.
Additional coeMcient of ADI for PMP of HT = −0:21538.

The estimated forecast error measured in terms of MAPE is then given as

logMAPE = 3:0789 + (0:1671) + (0:6458) + (1:5031 × 0:39) + (0:62223 × 2:76) + (−0:07015)

+ (−0:20068 × 2:76) + (−0:7919 × 0:39) + (−0:21538 × 2:76) = 4:67

by taking the natural logarithm. Hence MAPE is equal to 106.49.
The MAPE estimated in this way for these input variables using various forecasting methods are

displayed in ascending order, as shown in Fig. 1.

6. Discussion and conclusions

Accurate forecasting is critical for the airline operators as the price of not having the right part
available at the right time in the right place is steep. An aircraft operator can incur costs of more
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than $50,000 for each hour if a plane is on the ground. However, it was recognised from the
start that demands for aircraft spares exhibited unexpectedly high variation and a large number of
airline companies still used earlier methods [1, 2] speci%cally SES and MTBR, with little or no
appreciation of the other forecasting methods used in this study. The results of this study show the
use of the SES and MTBR methods to be questionable as they consistently create poor forecasting
performance which remains poor as the demand variability increases. Accordingly, it is recommended
that companies reconsider using them.

The evaluations made in the study were made for aircraft parts which had previously received
little attention. They clearly show that traditional forecasting techniques mentioned above are based
on assumptions that are inappropriate for parts with sporadic demand. Croston [5] demonstrated that
using simple exponential smoothing forecast methods to set inventory levels can lead to excessive
stocking. The analysis of results in this study concludes that the forecasting demand methods are
clearly dominated by the weighted moving average and its superiority increases with the increase
of SPL. Weighted moving averages is much superior to exponential smoothing and could provide
tangible bene%ts to airline operators and maintenance service organisations forecasting intermittent
demand. The highest forecasting error occurs when Winter’s method forecasts demand with high
variation. This conclusion contradicts previous research of forecasting intermittent demand, particu-
larly [7,28]. With the exception of the results of the run of the model shown in Fig. 1, for all others
the WMA, Holt and Croston methods were superior.

This research has shown that the level of appropriate factors has an e7ect on the forecasting
performance. The results indicate that the impact of demand variability, such as CV 2 and ADI, on
forecast errors (measured in terms of MAPE) is signi%cant, and that as demand variability (CV 2

and ADI) increases, so the MAPE increases. ADI has more e7ect on a quarterly SPL than with
a monthly and weekly SPL. This was observed in most methods except for the MW. Further, to
determine if there are isolatable conditions or characteristics according to aircraft component type
or their associated parts which may cause certain forecasting methods to predict more accurately,
PMP was tested, and was shown to have a signi%cant e7ect in terms of forecasting performance.
Again this was for most methods except for the MW. Generally, hard-time HT components have
more e7ect in increasing accuracy measuring MAPE, compared with condition-monitoring CM.

The study has presented a model that could be of great bene%t to airline operators and other
maintenance service organisations. It will enable them to select in advance the appropriate forecasting
method that better meets their cyclical demand for parts. This approach is consistent with our
objectives to compare di7erent forecasting methods when faced with intermittent demand.

Finally, given the consistent results obtained in this study, it is believed these results are robust,
especially in the light of their congruence with theoretical arguments appearing in the literature.
This study has taken a step in the direction of de%ning the relationship between the accuracy of
forecasting measurement and their factors. Although we have used data from one particular airline
operator, it is suggested that these %ndings may be applicable elsewhere as other industrial sectors
have similar demand patterns to airlines.
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